首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2028篇
  免费   40篇
  国内免费   7篇
化学   1145篇
晶体学   28篇
力学   53篇
数学   241篇
物理学   608篇
  2022年   24篇
  2020年   33篇
  2019年   39篇
  2018年   32篇
  2017年   28篇
  2016年   54篇
  2015年   33篇
  2014年   37篇
  2013年   135篇
  2012年   88篇
  2011年   113篇
  2010年   64篇
  2009年   55篇
  2008年   65篇
  2007年   76篇
  2006年   68篇
  2005年   51篇
  2004年   54篇
  2003年   45篇
  2002年   37篇
  2001年   45篇
  2000年   39篇
  1999年   22篇
  1998年   23篇
  1997年   18篇
  1996年   22篇
  1995年   19篇
  1994年   44篇
  1993年   30篇
  1992年   45篇
  1991年   28篇
  1990年   39篇
  1989年   28篇
  1988年   25篇
  1987年   21篇
  1986年   27篇
  1985年   26篇
  1984年   35篇
  1983年   27篇
  1982年   30篇
  1981年   25篇
  1980年   19篇
  1979年   36篇
  1978年   36篇
  1977年   27篇
  1976年   19篇
  1975年   20篇
  1974年   18篇
  1973年   23篇
  1970年   14篇
排序方式: 共有2075条查询结果,搜索用时 15 毫秒
121.
Water dispersible silver nanoparticles(AgNps) were prepared using thiacalix[4]arene tetrahydrazide(TCTH) as a reducing and stabilizing agent.TCTH-AgNps were characterized by surface plasmon resonance(SPR),transmission electron microscopy(TEM) and energy dispersive X-ray(EDX).Relatively uniform 20 nm spherical particles of TCTH-AgNps were efficiently formed over a pH range of 5-9 and from 10-40 ℃.The interaction behavior of TCTH-AgNps with different amino acids was investigated using spectrophotometry and spectrofluorimetry.Among the amino acids tested,only tryptophan and histidine showed fluorescence quenching and fluorescence enhancement,respectively.The linear detection range by Stern-Volmer plot was 5 nmol/L to 0.48 μmol/L for tryptophan and 4 nmol/L to 0.54 μmol/L for histidine.TCTH-AgNps were able to effectively reduce the levels of gram-positive bacteria,gram-negative bacteria,and fungi.These properties argue for the potential use of TCTH-AgNps as detectors of histidine and tryptophan and as antibiotics.  相似文献   
122.
Suman L. Jain 《合成通讯》2013,43(10):1459-1462
The oxidation of a variety of benzylic and secondary alcohols was achieved in excellent yields using an NBS/NH4Cl system in aqueous acetonitrile (CH3CN‐H2O; 7/3 v/v) at 80°C under very mild conditions.  相似文献   
123.
Ring-opening (ROP) and enzymatic copolymerization (ECP) are among the most widely used approaches for synthesizing copolymers of polycaprolactone (PCL). It involves multiple-step reactions and the utilization of enzymes that make the process a lot more complicated, time consuming, and expensive. Atom transfer radical polymerization (ATRP) has been adopted to synthesize a novel amphiphilic copolymer in our study. The study presents a method to eliminate the ROP/ECP multiple steps in monomer polymerization thus making the process simpler and smoother. The synthesis of cationic polymer micelles copolymer of PCL-PGMA (polycaprolactone grafted poly glycidyl methacrylate) was carried out using direct functionalization of hydroxy group in crude PCL to achieve a higher degree of functionalization, i.e., 12.8% for macroinitiator. FTIR and 1H-NMR confirmed the successful synthesis of the copolymer with better control over the molecular weight with a PDI (1.84). DSC and XRD results showed the reduction of crystallinity by 86.81%, making copolymer more compatible for drug delivery application. The synthesized copolymer was further converted to nano-micelles drug carrier having an average size of 96.08 ± 21.22 nm. The drug encapsulation efficiency achieved was 60.0 ± 1.7%, and nano-micelles rendered a slow and controlled release of naproxen with long-term storage stability.  相似文献   
124.
Zeolite crystals can be used as seeds or aluminosilicate sources in syntheses to control polymorphs and/or reduce the quantity of organics used as structure-directing agents. A frequently invoked hypothesis for interzeolite transformations is that zeolites share some underlying similarity in structure, most notably in cases pertaining to organic-free syntheses. Herein, we show for the first time that ZSM-5 (MFI) can be directly obtained from USY (FAU) through an interzeolite transformation between parent–daughter structures lacking common building units in the absence of a structure-directing agent and seeds. We show that interzeolite transformation leads to a crystalline product with fewer defects. Our findings also reveal that ZSM-5 is a metastable intermediate that undergoes further transformation to mordenite (MOR) and quartz. The MFI-to-MOR transition is counter to reported trends for which transformations lead to structures with reduced molar volume. Herein, we propose mechanistic arguments that suggest the driving force for interzeolite transformation is more complex than guidelines posited in the literature.  相似文献   
125.
The conventional condensation and refluxing process was employed to synthesize Ni(II) and Cu(II) complexes of Methylcarbamatethiosemicarbazone ligand. Reactions were carried out at the pH of 7. The molar ratio of the ligand and metal salt was 2:1. The structures of the synthesized metal complexes were suggested by different analytical techniques such as magnetic susceptibility, molar conductance, IR, EPR and UV spectroscopy. Experimental studies confirmed the octahedral geometry for all the complexes. The geometry of the ligand and complexes were also confirmed by theoretical studies. The complexes were investigated for biological action against pathogenic fungi (C. krusei, C. albican) and bacteria (S. aureus, E. coli). The antimicrobial results confirmed superior inhibition potential of the metal complexes as compared with the parent ligand. The enhanced antimicrobial activities might be due to the chelation. Molecular-docking assays confirmed the strong interaction of ligand with target antimicrobial protein DNA gyrase-B.  相似文献   
126.
127.
The potential advantages of ion implantation have been exploited in virtually every kind of semiconductor device. Several commercially important devices owe their existence to this technique.

Ion implantation provides precise control over the amount of dopant, concentration profile and lateral dimensions in device fabrication. The high degree of uniformity and reproducibility have made it possible to produce sophisticated devices and integrated circuits with high yield and tight tolerances. This is a truly planar process. It is possible to achieve high doping concentrations with relatively lower processing temperatures thereby avoiding lifetime degradation. The process is carried out in an inherently clean environment. A wide range of dopants is available and one is not limited by the particular properties of the substrate. There is great flexibility in choice of masking materials and self-alignment of doped regions in MOS devices is facilitated.

The increasing impact of ion implantation on device technology is discussed with reference to some recent developments. Specific commercially manufactured devices are mentioned.

Ion implantation machines continue to undergo development aimed at higher throughputs and cleaner vacuum. There is the need for greater reliability of machines. Effort is also directed at the development of low cost machines for dedicated applications.

Design of implanted devices continues to be an empirical process in some respects. The ability to accurately predict profile shapes in samples implanted (perhaps through a screen oxide) and subject to complicated post-implantation process steps, would cut down development time and costs.  相似文献   
128.
129.
130.

The reaction of indol-2,3-diones ( 1a–i ) with 5-aminoindazole ( 2 ) has resulted in the formation of hitherto unknown 3-(indazol-5-yl)iminoindol-2-ones ( 3a–i ) in quantitative yields which, on 1,3-dipolar cyclocondensation with mercaptoacetic acid ( 4 ), has afforded a series of new spiro heterocycles, 3′-(indazol-5-yl) spiro[3H, indol-3, 2′ -thiazolidine]-2,4′-diones* ( 5a–i ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号